第九章 B 淋巴细胞

一、选择题

A 型题

- 1、BCR 复合物的组成成分为()
- A. mIg,CD3
- B. IgM, CD79a/CD79b
- C. IgD, CD79a/CD79b
- D. mIg, Iga 和 Igβ
- E. mIg, IgA 和 IgG
- 2、成熟 B 细胞表达的 mIg 主要为()
- A. mIgM
- B. mIgD
- C. mIgG
- D. mIgM 和 mIgG
- E. mIgM 和 mIgD
- 3、传递B细胞活化信号1的信号转导分子为()
- A. CD79a 和 CD79b
- B. CD19和CD21
- C. CD3 和 CD4 www.med126.com
- D. CD4和CD8
- E. CD40 和 CD40L
- 4、BCR与抗原结合后不能直接传递抗原刺激信号,原因是()
- A. mIg 与抗原结合的亲和力不高
- B. mIg 的 L 链胞内部分很短
- C. mIgM 的 H 链胞内部分很短

- D. mIgD的 H链胞内部分很短
- E. mIgM 和 mIgD 的 H 链胞内 部分均很短
- 5、关于 BCR 的叙述,下列哪项是错误的? ()
- A. 其化学本质是 mIg
- B. 能有效地摄取可溶性抗原
- C. 识别抗原有 MHC 限制性
- D. 与抗原结合后产生 B 细胞活化信号 1
- E. B细胞活化信号 1 经 Igα 和 Igβ 传至胞内
- 6、 B细胞的表面受体不包括()
- A. BCR
- B. HIV 受体
- C. EB 病毒受体
- D. CR1和 CR2
- E. FcγR II
- 7、下列哪种组合是 B 细胞活化的第二信号? ()
- A. CD80(B细胞)——CD28(T细胞)
- B. CD86(B细胞)——CD28(T细胞) www.med126.com
- C. CD40L(B细胞)——CD40(活化的T细胞)
- D. CD40(B细胞)——CD40L(活化的T细胞)
- E. B7(B细胞)——CD28(T细胞)
- 8、下列哪种组合可抑制 T 细胞的活化? ()
- A. CD80(B细胞)——CD28(T细胞)
- B. CD86(B细胞)——CD28(T细胞)
- C. B7(B细胞)——CTLA-4(活化的T细胞)

- D. CD40(B细胞)——CD40L(活化的T细胞)
- E. CD40L(B细胞)——CD40(活化的T细胞)
- 9、关于B1细胞,叙述错误的是()
- A. 细胞表面表达 CD5 和 mIgM
- B. 其 BCR/所产生的抗体与抗原结合的特异性高
- C. 产生于个体发育的早期
- D. 倾向于定位在肠道和腹膜腔
- E. 倾向于产生抗细菌多糖抗原的抗体
- 10、关于 B2 细胞, 叙述正确的是()
 - A. 产生于胎儿期
 - B. 可与多种不同的抗原表位结合,表现为多反应性
 - C. 对蛋白质抗原的应答能力强
 - D. 主要产生低亲和力的 IgM
 - E. 可产生致病性自身抗体而诱发自身免疫病
- 11、B1 细胞的主要功能不包括()
 - A. 产生抗细菌多糖抗原的抗体而抗微生物感染
 - B. 产生抗病原体蛋白质的抗体而抗微生物感染
 - C. 产生多反应性自身抗体而清除变性的自身抗原 www.med126.com
 - D. 产生致病性自身抗体而诱发自身免疫病
 - E. 在肠道抗病原体的粘膜免疫中起重要作用
- 12、哺乳动物 B 细胞发育成熟的场所为()
 - A. 骨髓
 - B. 胸腺
 - C. 淋巴结
 - D. 脾脏

- E. 粘膜伴随淋巴组织
- 13、关于B细胞,下列哪种说法不正确?()
 - a) 骨髓中的淋巴细胞主要为 B 细胞
 - b) B细胞表面表达的 mIg,是B细胞的抗原受体
 - c) B细胞的抗原受体库能对众多的、无限的非己抗原产生应答
 - d) 某个 B 细胞产生的抗体所结合的抗原与该 B 细胞 BCR 结合的抗原相同
 - e) B1 细胞和 B2 细胞产生的抗体均有高度的特异性
- 14、B细胞活化的辅助受体是指()
 - a) CD79a/CD79b
 - b) CD40——CD40L
 - c) CD80——CD28
 - d) CD86——CD28
 - e) CD19—CD21—CD81—Leu 13
- 15、关于 B1 和 B2 细胞,错误的是()
 - a) B1细胞初次产生于胎儿期
 - b) B2 细胞出生后才产生
 - c) B2 细胞的 BCR 与抗原结合的特异性低,具有多反应性 www.med126.com
 - d) B2细胞主要对蛋白质抗原产生应答
 - e) B1 细胞主要对多糖抗原产生应答
- 16、抗体的调理作用是指()
 - a) 抗体与病毒表面抗原结合后,阻止病毒与靶细胞结合
 - b) 抗体与胞内菌结合后,阻止胞内菌与靶细胞结合
 - c) 抗体与细菌毒素结合后,阻止细菌毒素发挥作用
 - d) 与病原体结合的抗体, 其 Fc 段与吞噬细胞的 Fc 受体结合, 促进

病原体被吞噬

- e) 抗体与病原体表面抗原结合,直接导致病原体死亡
- 17、抗体的中和作用是指()
 - a) 抗体与病原体结合后,阻止病原体与靶细胞的结合
 - b) 抗体与病原体结合后,直接导致病原体死亡
 - c) 抗体与病原体结合后,促进吞噬细胞对病原体的吞噬清除
 - d) 形成病原体-抗体-补体复合物,促进吞噬细胞对病原体的吞噬清除
 - e) 抗体与可溶性抗原结合,从而阻止可溶性抗原与 BCR 结合
- 18、B 细胞作为专职性 APC, 正确的表述是()
 - A. B细胞通过 BCR 结合颗粒性抗原
 - B. B细胞的抗原提呈作用在自然免疫应答中十分重要
 - C. B细胞组成性地表达协同刺激分子
 - D. 只有活化的 B 细胞才是抗原提呈细胞
 - E. 正常情况下, B 细胞也能把可溶性自身抗原提呈给 T 细胞
- 19、B 细胞的 BCR 结合的抗原为()
 - A. TD 抗原
 - B. TI 抗原

www.med126.com

- C. 颗粒性抗原
- D. 可溶性抗原
- E. 外源性抗原和内源性抗原
- 20、正常情况下, B 细胞不能把可溶性自身抗原提呈给 T 细胞而诱导自身免疫应答的原因是()
 - A. B细胞不能有效地摄取可溶性抗原
 - B. B细胞不能有效地加工、处理可溶性抗原

	C.	未活化的 B 细胞不能表达协同刺激分子
	D.	未活化的 B 细胞不产生细胞因子
	E.	B细胞只能提呈颗粒性抗原
X	型题	
1,	BCF	R 复合物的组成成分包括 ()
	A.	MIgM
	B.	MIgG
	C.	Igα
	D.	$Ig\beta$
	E.	IgG
2、	传递	色 B 细胞活化信号 1 的信号转导分子为 ()
	A.	CD3
	B.	CD19
	C.	CD21
	D.	CD79a
	E.	CD79b
3、	B1 \$	细胞的主要功能为()
	A.	产生抗细菌抗体而抗微生物感染
	B.	www.med126.com 产生特异性高、亲和力强的抗体,阻止病原体与靶细胞的结合
	C.	产生特异性高、亲和力强的抗体,促进吞噬细胞对病原体的吞噬
	清阴	
	D.	产生多反应性自身抗体,清除变性的自身抗原
	E.	产生致病性自身抗体,诱导自身免疫病
4、	B 细]胞的主要功能包括()

A. 产生抗体介导体液免疫应答

B.	提呈颗粒性抗原给T细胞
C.	提呈可溶性抗原给T细胞
D.	分泌细胞因子参与免疫调节
Е.	组成性地表达协同刺激分子,提呈自身抗原,参与自身免疫应答
填	空题
В	细胞表面的抗原受体为,它的化学结构为,其作用
是_	o
ВС	CR 复合物的组成成分为、和和。
哺	乳动物的 B 细胞在发育成熟,它的主要功能是产生、
及:	分泌参与免疫调节。
Bź	细胞是一类专职,借其表面的 BCR 结合抗原,通
过	内吞和加工后,以
B绉	田胞有异质性,根据是否表达分子,可分成细胞和细胞。
В	细胞并不组成性地表达分子,但在某些微生物组分的诱
导	下可表达这些分子,因此只有B细胞才是抗原提呈细胞。
名	词解释
BCF	R 复合物(BCR complex)
抗	体的调理作用(the opsonization of antibody)
多,	www.med126.com 反应性(polyreactivity)
mI	g(membrane Ig)
简	答题
试	比较 B1 细胞与 B2 细胞的异同。
试	述 B 细胞的主要功能。
	C.D.E.填B是B哺及B过BB导名BC抗多m简试

3、 简述抗体参与体内免疫反应的主要方式。

参考答案

一、选择题

A 型题

题号	答案	题号	答案	题号	答案	题号	答案
1	D	6	В	11	В	16	D
2	Е	7	D	12	A	17	A
3	A	8	С	13	Е	18	D
4	Е	9	В	14	Е	19	D
5	С	10	С	15	С	20	С

X 型题

题号	答案	题号	答案	题号	答案	题号	答案
1	ACD	2	DE	3	ADE	4	ACD

二、填空题

- 1. BCR/B细胞受体, mIg/ 膜表面免疫球蛋白,结合特异性抗原
- 2. BCR, CD79a/Igα, CD79b/Igβ
- 3. 骨髓, 抗体, 提呈抗原, 细胞因子
- 4、 APC/抗原提呈细胞,可溶性,抗原肽: MHC 分子复合物
- 5、 CD5, B1, B2 www.med126.com
- 6、 协同刺激,活化的
- 三、名词解释
- 1. BCR 复合物(BCR complex): 由 BCR 和 CD79a(Igα)/CD79b(Igβ)组成。 BCR(mIg)能特异性结合抗原,但不能传递抗原刺激信号。Igα 和 Igβ 作为主要的信号转导分子,可转导抗原与 BCR 结合所产生的 B 细胞活化信号 1,还参与 mIg 的表达与转运。
- 2、抗体的调理作用(the opsonization of antibody): 与病原体结合的抗体(如

- IgG),其 Fc 段又与吞噬细胞表面的 Fc 受体结合,将病原体带至吞噬细胞表面,使之易被吞噬,此即抗体的调理作用。此外,AgAb 复合物与补体结合,补体再与吞噬细胞表面的补体受体结合,促进AgAb 复合物被吞噬细胞吞噬,这也属于抗体的调理作用。
- 3、多反应性(polyreactivity): B1 细胞产生于个体发育早期,其 BCR 与 所产生的抗体能够以相对低的亲和力与多种不同的抗原表位结合, 这种现象称为多反应性。
- 4、 mIg(membrane Ig): 膜表面免疫球蛋白,属于 Ig 超家族原型,为单体,由二条重链和二条轻链组成。成熟 B 细胞的 mIg 主要为 mIgM 和 mIgD,即 B 细胞受体(BCR),其作用是结合特异性抗原。mIg 的抗原结合点位于 VH 和 VL 的高变区内, mIgH 链的胞内部分很短,不能传递抗原刺激信号。

四、简答题

1、 试比较 B1 细胞与 B2 细胞的异同。

初次产生的时间: B1 细胞为胎儿期, B2 细胞为出生后; 更新的方式: B1 细胞进行自我更新, B2 细胞由骨髓产生; 自发性 Ig 的产生: B1 细胞产生多, B2 细胞产生少; B1 细胞的 BCR 及所产生的抗体特异性低,表现为多反应性,而 B2 细胞为单特异性,尤其在免疫后; www.med126.com B1 细胞分泌 IgM 多于 IgG,而 B2 细胞分泌 IgG 多于 IgM; 体细胞高频突变: B1 细胞低/无, B2 细胞高; B1 细胞主要对多糖类抗原应答,而 B2 细胞主要对蛋白质抗原应答。

2、 试述 B 细胞的主要功能。

①产生抗体,参与特异性体液免疫应答。受抗原刺激及细胞因子等的作用,B细胞活化、增殖、分化为浆细胞,分泌特异性 Ig。②作为专职性 APC,参与抗原提呈。B细胞借其表面的 BCR 结合可溶

性抗原,通过内吞和加工后,以 Ag 肽:MHC 分子复合物的形式提呈给 T 细胞。③分泌细胞因子,参与免疫调节。静息的 B 细胞不产生细胞因子,但激活的 B 细胞能产生大量细胞因子,参与免疫调节、炎症反应及造血过程。

- 3、 简述抗体参与体内免疫反应的主要方式。
 - ①中和作用: 抗体与病毒或胞内菌的表面抗原结合,阻止病毒或胞内菌与靶细胞表面的相应受体结合,从而阻止病毒或胞内菌与靶细胞结合; 此外, 抗体还可以中和相应细菌外毒素的毒性。②调理作用: 抗体通过 Fab 段与病原体表面抗原结合,其 Fc 段又可与吞噬细胞表面的 Fc 受体结合,将病原体带至吞噬细胞表面,使之易被吞噬清除。③抗体与病原体表面抗原结合后,激活补体,形成病原体-抗体-补体复合物, 再与吞噬细胞表面的补体受体结合, 使病原体易被吞噬清除。

www.med126.com