3.苷类化合物的一般性状、溶解性、旋光性、显色反应如何?
(1)一般性状:苷类多是固体,其中糖基少的可结晶,糖基多的如皂苷,则多呈具有吸湿性的无定形粉末。苷类一般是无味的,但也有很苦的和有甜味的。
(2)溶解性:苷类的亲水性与糖基的数目有密切的关系,其亲水性往往随糖基的增多而增大,大分子苷元如甾醇等的单糖苷常可溶于低极性有机溶剂,如果糖基增多,则苷元所占比例相应变小,亲水性增加,在水中的溶解度也就增加。因此用不同极性的溶剂顺次提取时,在各提取部位都有发现苷的可能。C-苷与O-苷不同,无论在水或其他溶剂中的溶解度一般都较小。
(3)旋光性:多数苷类呈左旋光性,但水解后,由于生成的糖常是右旋的,因而使混合物呈右旋光性,比较水解前后旋光性的变化,可用以检识苷类的存在。
(4)显色反应:Molish反应。Molish试剂由浓硫酸和α-萘酚组成。可检识糖和苷的存在。
4.苷类化合物苷键裂解方法有哪些?
通过苷键的裂解反应可使苷类化合物苷键切断,其目的在于了解组成苷类的苷元结构及所连接的糖的种类和组成,决定苷元与糖的连接方式及糖与糖的连接方式。苷类化合物苷键裂解方法主要包括以下几种。
(1)酸催化水解
苷键具有缩醛结构,易为稀酸催化水解。反应一般在水或稀醇溶液中进行。常用的酸有盐酸、硫酸、乙酸、甲酸等。水解反应是苷原子先质子化。然后断键生成阳碳离子或半椅型中间体,在水中溶剂化而成糖。
酸催化水解的难易与苷键原子的电子云密度及其空间环境有密切的关系,只要有利于苷键原子的质子化就有利于水解,其水解难易的规律可概括为:
①按苷键原子不同,酸水解的易难顺序为:N-苷>O-苷>S-苷>C-苷。
②呋喃糖苷较吡喃糖苷易水解。
③酮糖较醛糖易水解。
④吡喃糖苷中吡喃环的C-5上取代基越大越难水解,因此五碳糖最易水解,其顺序为五碳糖>甲基五碳糖>六碳糖>七碳糖。如果接有-COOH,则最难水解。
⑤氨基糖较羟基糖难水解,羟基糖又较去氧糖难水解。
⑥芳香属苷,如酚苷因苷元部分有供电子结构,水解比脂肪属苷如萜苷、甾苷容易得多。
⑦苷元为小基团者,苷键横键的比苷健竖键的易水解,因为横键上原子易于质子化。苷元为大基团者,苷键竖键的比横键的易水解,因为苷的不稳定性促使水解。
⑧N- 苷易接受质子,但当N原子处于嘧啶或酰胺位置时,N-苷也难于用矿酸水解。
(2)碱催化水解
仅酯苷、酚苷、烯醇苷和β-吸电子基取代的苷等才易为碱所水解。
(3)酶催化水解
酶催化反应具有专属性高,条件温和的特点。常用的酶有转化糖酶,水解β-果糖苷健。麦芽糖酶专使α-葡萄糖苷键水解。杏仁苷酶是一种β-葡萄糖苷水解酸,专属性较低,水解一般β-葡萄糖苷和有关六碳醛糖苷。纤维素酶也是β-葡萄糖苷水解酶。医学全.在.线www.med126.com
pH条件对酶水解反应是十分重要的,芥子苷酶水解芥子苷,在pH7时酶解生成异硫氰酸酯类,在pH3~4时酶解生成腈和硫黄。
(4)氧化开裂法
Smith裂解是常用的氧化开裂法。特别适用于一般酸水解时苷元结构容易改变的苷以及难水解的C-苷。但不适用于苷元上有1,2-二醇结构的苷类水解。
Smith裂解反应分3步:过碘酸钠氧化、四氢硼钠还原、稀酸水解。
从Smith裂解得到的多元醇,可确定苷中糖的类型。如六碳糖苷(如葡萄糖、甘露糖、半乳糖)Smith裂解得到的多元醇为丙三醇;五碳糖苷(如阿拉伯糖、木糖)Smith裂解得到的多元醇为乙二醇;甲基五碳糖苷(如鼠李糖)Smith裂解得到的多元醇为1,2-丙二醇
5.提取苷类化合物时,应注意什么问题?
提取原生苷时,必须设法抑制或破坏酶的活性。一般常用方法是在中药中加入碳酸钙,或采用甲醇、乙醇或沸水提取。同时尽量避免与酸、碱接触。提取次生苷时要利用酶的活性。
采用溶剂萃取法分离时,一般可用乙醚或氯仿萃取得到苷元,用醋酸乙酯萃取得到单糖苷,用正丁醇萃取得到多糖苷。
6.研究苷类化合物结构时,糖的鉴定方法有哪些?
(1) 纸色谱
糖类的纸色谱常用水饱和的有机溶剂展开,其中以正丁醇-乙醇-水和水饱和的苯酚两种溶剂系统应用最为普遍。
糖类的纸色谱常用显色剂有:硝酸银试剂;三苯四氮唑盐试剂;苯胺-邻苯二甲酸盐试剂;3,5-二羟基甲苯—盐酸试剂;过碘酸加联苯胺试剂等。
(2)薄层色谱
糖的极性大,在硅胶薄层上进行层析时,点样不宜过多(一般少于5μg)。若点样太多,斑点就会明显拖尾,Rf值也下降,使一些Rf值相近的糖难以获得满意的分离。若硅胶用0.03mol/L硼酸溶液或一些无机盐(主要是强碱与弱或中等强度的酸所成的盐)的水溶液代替水调制吸附剂涂铺薄层,则样品承载量可明显增加,分离效果也有改善。
(3) 气相色谱
(4) 离子交换色谱
(5) 液相色谱
7.研究苷类化合物结构时,糖链的结构研究内容及相应的研究方法有哪些?
研究苷类化合物结构时,糖链的结构研究主要解决三个问题:单糖的组成;糖与糖的连接位置和顺序;苷键的构型。
(1)单糖的组成鉴定
一般是将苷键全部酸水解,然后用纸色谱检出单糖的种类。采用薄层扫描法或气相色谱法测定各单糖的分子比。
(2) 单糖之间连接位置的确定
将苷全甲基化,然后水解苷键,鉴定所有获得的甲基化单糖,其中游离的羟基所在位置就是连接位置。注意水解条件应尽可能温和,否则会发生去甲基化反应和降解反应。
目前单糖之间的连接位置多用13CNMR中的苷化位移来确定。
(3)糖链连接顺序的确定
早期决定糖连接顺序的方法主要是缓和酸水解,酶水解,乙酰解,碱水解等方法,将苷的糖链水解成较小的片段(各种低聚糖),然后分析这些低聚糖的连接顺序。质谱分析也可用于糖链连接顺序的研究。如在快原子轰击质谱(FABMS)中有时会出现苷分子中依次脱去末端糖的碎片离子峰。此外,目前NOE差谱技术、HMBC谱也可用于糖链连接顺序的确定。
(4) 苷健构型的确定
①利用酶水解进行测定
如麦芽糖酶能水解的为α-苷键,而杏仁苷酶能水解的为β-苷键。但必须注意并非所有的β-苷键都能为杏仁苷酶所水解。
②利用Klyne经验公式进行计算
Δ[M]D=[M]D 苷— [M]D苷元
③利用NMR进行测定
1HNMR:葡萄糖β-苷键JH1-H2=6~8Hz,α-苷键JH1-H2=3~4Hz。鼠李糖、甘露糖不能用上法鉴别。
13CNMR:1JC1-H1=170Hz(α-苷键),1JC1-H1=160Hz(β-苷键)。
8.苦杏仁苷有何主要理化性质?如何鉴别?
苦杏仁苷是一种氰苷,易被酸和酶所催化水解。水解得到的苷元α-羟基苯乙腈很不稳定,易分解生成苯甲醛和氢氰酸。因此小剂量口服苦杏仁苷,由于生成α-羟基苯乙腈,并进而释放出少量氢氰酸,对呼吸中枢呈镇静作用,而具有镇咳作用。但大剂量口服,则可产生中毒症状。
鉴别苦杏仁苷时,可利用其水解产生的苯甲醛。苯甲醛不仅具有特殊的香味,而且可使三硝基苯酚试纸显砖红色。以此鉴定苦杏仁苷的存在。