二、电离辐射对DNA的作用
DNA是细胞增殖、遗传的物质基础,是引起细胞生化、生理改变的关键性物质。DNA是电离辐射作用的靶分子,在细胞辐射损伤中起重要作用。
(一)DNA分子损伤
1.碱基变化(DNA base change):有下列几种:(1)碱基环破坏;(2)碱基脱落丢失;(3)碱基替代,即嘌呤碱被另一嘌呤碱替代,或嘌呤碱被嘧啶碱替代;(4)形成嘧啶二聚体等。4种碱基的辐射敏感性依次为T>C>A>G。
2.=DNA链断裂(DNA molecular breakage):是辐射损伤的主要形式。磷酸二酯键断裂,脱氧核糖分子破坏,碱基破坏或脱落等都可以引起核苷酸链断裂。双链中一条链断裂称单链断裂,两条链在同一处或相邻外断裂称双链断裂(doublestrand breaks)。双链断裂常并发氢键断裂。双链断裂难以修复,是细胞死亡的重要原因。
3.DNA交联(DNA cross-linkage):DNA分子受损伤后,在碱基之间或碱基与蛋白质之间形成了共价键,而发生DNA-DNA交联和DNA-蛋白质交联。嘧啶二聚体即是一种链内交联,还可发生链间交联。图3-2是DNA分子各种损伤的示意图。
图3-2 电离辐射对DNA分子的损伤
(二)DNA合成抑制
DNA合成抑制是一个非常敏感的辐射生物效应指标,受0.01Gy照射即可观察到抑制现象。小鼠受0.25~1.25Gy γ线全身照射3小时后,3H-TdR掺入脾脏DNA的量即明显下降,下降程度与照射剂量成正比。照射后DNA合成抑制与合成DNA所需的4种脱氧核苷酸形成障碍、酶活力受抑制、DNA模板损伤、启动和调控DNA合成的复制子减少,以及能量供应障碍等都有关。
(三)DNA分解增强
在DNA合成抑制的同时,分解代谢明显增强。原因可能是辐射破坏了溶酶体和细胞核的膜结构,DNase释放直接与DNA接触,增加了DNA的降解。在一定剂量范围内,降解的程度决定于照射剂量。照射后DNA代谢产物尿中排出量明显增多。医学全.在线www.med126.com
三、电离辐射对蛋白质和酶的作用
(一)分子破坏
蛋白质和酶分子在照射后可发生分子结构的破坏,包括肽键电离、肽键断裂、巯基氧化、二硫键还原、旁侧羟基被氧化等,从而导致质蛋白质发子功能的改变。
(二)对合成的影响
辐射对蛋白质生物合成的影响比较复杂,有的被激活,有的被抑制,有的呈双相交化,即先抑制而后增强。在血清蛋白方面,照射后血清白蛋白和γ球蛋白含量下降,而α和β球蛋白含量升高。虽然血清蛋白质成分有升有降,但蛋白质净合成是下降的。
(三)分解代谢增强
照射后蛋白质分解代谢增强是非常显著的,主要是许多蛋白质水解酶活力增加。如照射后由于溶酶体被破坏,组织蛋白酶释放,活力明显增加,促使细胞内和细胞外蛋白质分解增强。同时,照射后机体摄取食物减少,加剧了蛋白质分解代谢,释出大量游离氨基酸。一部分生糖氨基酸通过糖异生作用转化为葡萄糖,一部分代谢为尿素或其它非蛋白氮,整个机体处于负氮平衡状态。尿中氨基酸及其代谢产物如牛磺酸、肌酸、尿素等排出量增多。